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The problem of the time-optimal control of the motion of a point mass by means of a force of bounded modulus is considered. 
It is required that the point be transferred from an arbitrary state of motion to the origin of the system of coordinates with zero 
velocity. By introducing self similar conjugate variables, the solution of the two-point problem can be successfully reduced to a 
search for the optimal root of a certain function, specified analytically. A complete solution of the control problem in the form 
of a synthesis is obtained using mathematical modelling methods. The feedback coefficients along the unit vectors of the position 
and velocity vectors are found and a control algorithm and a Bellman function are constructed. Examples using practical initial 
data are presented. © 1998 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

The controlled motions of  a point mass of constant mass under the action of a bounded force are 
investigated. The point has to be transferred from its arbitrary current position to the origin of 
coordinates of a certaJin inertial system with a zero final velocity ("a soft landing"). 

The controllable system, the terminal conditions, the constraints and the functional are described 
by re la t ions  o f  the  foma 

:~=v, o'=u;  x ( O ) = x  °, u ( O ) = u °  

x ( t f ) = O ,  V ( t / ) = O ;  t f - - > m i n ,  lul~<l (1.1) 

Here, x, ~, u are vectors of arbitrary dimension n, n ~> 2 andx °, u0 are the (initial) data, obtained by 
measurements. The somewhat more general case of  arbitrary constant values of  the mass m and a 
constraint on the controlling force I u I ~< u0 is reduced to a problem of the form (1.1) by means of  
elementary substitutions. The case of  an arbitrary final value of the variable x' and initial value of  the 
time to is treated in a similar manner. 

We also note that system (1.1) possesses central (spherical) symmetry and the general case of  a 
dimensionality n ~> 2 of  the geometrical space is equivalent to that of a plane (n = 2, see below). When 
x ° * O, ~ o ,  O, I (x °, ~o) I < I x ° ] I ~o I, the plane is specified by these vectors. In the case of  equality, 

0 0 0 0 0 0, that is, x = 0 or ~ = O, I (x ,  ~ ) I = Ix II ~ I, the problem degenerates and becomes one-dimensional. 
The situation of a general position is considered next. 

The formulation of the time-optimal problem (1.1) is quite standard and simple. Methods for the optimal control 
of motion in the form of the maximum principle [1], dynamic programming [1, 2], the/-problem of moments [3], 
as well as direct variational and numerical methods [4, 5] can be used. However, no solution of the problem has 
yet been obtained. The problem of synthesis is of special interest, namely, to construct the optimal feedback controls 
us = u*(x, ~) and Bellman function tf ffi T(x, ~) which is the least time to transfer a point to the state (0, 0) from 
a positionx, ~ at instant of time t (which remains until landing). Particular results are available: the classical problem 
for a one-dimensional system n = 1, see [1]; the case when the value of ,(tf) is not specified (a "hard landing"), 
see [1, 6, 7] and others. It :is well known that the solution of the boundary-value problem for arbitrary initial conditions 
and the investigation of  the analytic properties of the Bellman function and the optimal control present fundamental 
difficulties [1, 2, 6, 7]. As is customary in the case of control problems, these functions are piecewise-smooth with 
respect to the phase variables x and . .  

We shall first apply the necessary conditions for optimality in the method of dynamic programming 
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[1, 2, 5] to problem (1.1). In the case of a Bellman function T = T(x, ~), we obtain a functional-differential 
equation of the form 

(T x, u)+min(Tv', u ) = - l ,  lul~ 1 (1.2) 
u 

The corresponding derivatives are denoted by primes and the minimum of the scalar product is taken 
with respect to the vector u which takes values from a unit n-dimensional sphere. In addition, the function 
T must be strictly positive when x, ~ * 0 and vanish when x = ~ = 0. 

On carrying out the operation of minimization in (1.2), we arrive at a Cauchy problem for a non- 
linear partial differential equation (the Hamilton-Jacobi-Bellman equation) [1, 2, 5, 8] of the form 

(p, v)+lql=l ,  p -  - T  x, q = - T  u,  =qlql -l 
(1.3) 

T = T ( x ,  v ) > 0 ,  Ixl+lvl>0; T(0, 0 ) = 0  

The solution of problem (1.3) is sought in the class of piecewise-smooth functions. 

We note that the natural condition T > 0 is necessary since absurd results may be obtained if it is ignored. Actually, 
the function T = (e, ~), which is linear with respect to u and where e is a constant unit n-vector (lel = 1), satisfies 
all the relations (1.3) (apart from T > 0), but certainly it is not the Bellman function of the problem. 

Considerable difficulties, due to the smoothlessness of the Bellman function T, arise when using 
dynamic programming to solve the synthesis problem [1, 2]. This function undergoes discontinuities of 
the fast kind in certain manifolds of lower dimensionality and its derivatives will be generalized (singular) 
functions. We shall apply the optimality conditions in the form of the maximum principle [1]. 

We introduce the variables (momenta) which are conjugate to the phase variablesx and u, respectively. 
The solution of the time-optimal problem reduces to constructing the solution of the two-point boundary- 
value problem 

x = v ,  i f = u * ,  u * = q l q l  -l', x ( 0 ) = x  °, v ( 0 ) = u  °, x ( t y ) = O  

u ( t f ) = O, p(  t ) = p ° = const, q( t ) = - p° t + q ° ; q0=const  
(1.4) 

where p and q can be normalized. System (1.4) can be completely integrated in terms of elementary 
functions. The permissible values of  the unknowns p0, q0 and t / >  0 which satisfy the final conditions 
forx  and x) have to be determined. 

2. C O N S T R U C T I O N  OF T H E  P H A S E  T R A J E C T O R Y  

We will now write an explicit analytic expression for the phase trajectoryx(t), ~(t). Using the structure 
of the optimal control u*( t )  and substituting it into the equations of motion, using (1.4), we obtain, 
after integration, a representation for the velocity vector ~(t) in terms of elementary functions of the 
form 

v ( t ) = u O + I  Q ( ~ ) d . c = v ° +  [-~R(x) + (prl - o~)V(x)] ~ 
o R(x )  

Q( t )  = - ~ t  + T I, R( t )  =lQ(t)l= (p2t2 - 2 a p t + l )  )~ 

V(t)=arsh×,  ~ = ( p t - a ) ( 1 - t ~ 2 )  -~ ,  p=l~l, ~=q°tq° l - I  

= p°lq°l-l ,  II11= 1, a r s h × = l n [ × + ( l + x 2 ) ~ ]  

(~, r l )=po ,  o = c o s ( k ,  rl), - 1 ~ < ~ < 1 ;  u * = Q ( t ) / R ( t )  

(2.1) 

The functions Q and R in (2.1) are defined for all t, ~ 11 and V is odd with respect to × since 
--~ + (1 + x2) v2 = [~ + (1 + ×2)1/2]-1. Note that, in (2.1), the normalization mentioned earlier is carried 
out on the quantity I q°l. As a result, the function u(t) depends on time explicitly, the known (measured) 
n-vector of  the parameters ~0 and, also, on the 2n - 1 unknown ~ and TI, which have to be determined 
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from the boundary conditions (1.1) (when t = tf, where tf is also unknown). The parameters o, p are 
defined in terms of the n-vectors ~, 11, where I rl I = 1. 

Using the representation ~(t) found in (2.1), we obtain, using the formula for repeated integration, 
a similar elementary representation for the position vector x(t) 

t 

x(t) = x ° +v °t + ~ (t - x)Q0;) dx = x ° + to (t) + 
0 R('g) 

(2.2) 

[(px + 30)R(x) + (302 - 1)V(x)]~ - ~-~ [oV(x) + R(x)]~ 2p 3 

The functions ~(t), R(t),  Y(t) are defined by (2.1). The upper value x = t and the lower value x = 0 
ofx are not substituted as yet in (2.1), (2.2) and the subsequent equations for brevity. Explicit representa- 
tions of the required phase variables x(t), ~(t) are thereby obtained using elementary algebraic and 
logarithmic functions. For convenience in the subsequent constructions, they can be represented in the 
form of "linear expres,;ions" in the vectors ~, 1] as follows: 

2 t 

° ( '  + V -  + v.n, =-p- (ov+ R)]o, v. :p-,vro 
x(t)  = x ° +o ° t +  Xg {+  Xnq, Xn = p -2 [ -R+(px -o )V ]~  (2.3) 

= ~p3 [(-px + 30)R + (-2pox + 302 - 1)V]~ 

Here, V~n(t ), Xg,n(t ) are known scalar functions of t which also depend on the unknown parameters 
p, 0; they vanish when t = 0. 

To avoid misunderstandings, it should be noted that the dependence of x and a~ on ~ and rl will 
actually be extremely non-linear since the coefficients Xg.n, Vg, n contain algebraic and transcendental 
(logarithmic) function.,; of p and 0. These functions are fairly smooth for the values of the argument 
t 1> 0 and the parameters p ~> 0, I o [ < 1 being considered. A separate treatment is required when 
] o ] = 1 (see Section 4). 

3. R E D U C T I O N  OF T H E  SYSTEM OF B O U N D A R Y  C O N D I T I O N S  

The efficient construction of the solution of boundary-value problem (1.4), that is, the determination 
of the unknown ~ and rl and the minimum value of tf for arbitrary values ofx  °, u0, presents the main 
difficulty in solving the time-optimal problem (1.1). We have a system of 2n linear algebraic equations 
in the vectors g and ~, obtained from (2.3) using (1.4): x(tf) = 0, u(ff) = 0, that is 

X~ (tf  )~ + Xrl (ty )'q = - x  ° - v  °t! 
(3.1) 

v~ (t I )~  + v~ (t I ) ~  = -v  0 

System (3.1) is uniquely solvable for arbitrary x °, ~0, tf, p, o since it is established by the 
Bunyakovskii-Cauchy i.nequality that its determinant is non-zero 

X~ (t] )Vn(ty ) -  V~ (t /  )Xn(t f  ) ~ 0 

System (3.1) has a partitioned diagonal matrix and the required ~ and rl are found from it in an 
elementary manner (as in the case of scalar ~ and rl) in the form of linear functions ofx  °, u0 

~ *  0 ~ *  0 ~=~*(x  0, v O, t f ,  p, a ) - q x X  +too 
(3.2) 

* 0 O,  * 0 * 0 ~xX ~ v  "q=r I (x , v ty, p, 0 ) -  + 

Here, ~*,u(tf, p, o), 11~*,~(t[, p, o)  are scalar functions of the unknown (tf, p, 0). Using elementary 
scalar-product operations, we obtain a system of three transcendental equations in the unknown 
(t I, p ,o )  
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11"2 = TI*2X02 * * 0 +2rlfflvlx I lu °lc+~,2v 02 = 1 

• * 0 0 * = p 2  ~.2 =~x2xO2 +2~x~vlx I10 Ic+~u2o 02 

• * _ 0 2 - -  * * iC+~vr lvO 02 = pO (U,  x)lX°llv ° * * 

(3.3) 

Here, c is an unknown scalar parameter which is determined in the same way as o (see (2.1)) by scalar 
multiplication of  the vectors x~a)°: (x °, a~ °) = I x°l l  a) ° I~. The u n k n o w n s  tf, p, o are arguments of  the 
elementary transcendental functions g*~,, ~*~, see (2.1)-(2.3) and (3.1)-(3.2). 

It is interesting to note that system (3.3) is determined by the three parameters I x ° I I a)° I~, which 
characterize the vectors x °, .0  in the plane specified by these vectors (I c I < 1). The simple degenerate 
case when c = -+1 has been studied in [1, 2]. It corresponds to a one-dimensional ~ystem, that is, to 
motion of the object (a point mass) along the line joining the geometrical point x v to the origin of 
coordinates. 

Note that system (3.3) is linear in the known (measured) parameters (x °, ~0) and can be solved for 
them. These parameters are determined as functions of the unknown tf > 0, p > 0, -1  ~< o ~< 1. 

The final solution of  system (3.3) can be obtained by numerical and numerical-graphical methods. 
However, a "direct" approach seems to be difficult to achieve, due  to the high dimension of system 
(3.3) (it is equal to three). The introduction of self-similar variables and a reduction in the dimensionality 
of the system being solved can considerably reduce the computational costs, and the required solution 
can be obtained in a clear numerical-graphical form [7, 8]. 

An analysis of  expressions (2.1) and (2.2) shows that it is preferable to introduce the vector ~ = t/~ 
instead of g; its modulus I ~ I = IX = t/p. The vector equations in ~ and 11, which are analogous to Eqs 
(3.1) for ~ and 11, then become 

x ° = t~(a¢~+anrl), v o = t/(b¢~+brl.q) 

a; = a; (Ix, o)  = -(1 / 2IX 3 )[(It + 30)a + iX + (30  2 - 1)b] 

an=an(iX, o)=iX-2(a+ob) ,  b~=b¢(ix, o )= iX-2 (a+ob)  (3.4) 

bn =bn(I.t, cs)=b/iX, a=a(I.t, o ) - R I ~ / = ( I . t 2 - 2 I X O + I ) ~ - I  

b = b(~t, o )  - Vl~ = arsh(la - o)(1 - o 2 )-)~ + arsh o(1 - o 2)-½ 

Note that a -- b = 0 when iX = 0 and the coefficients a~ n, be n have finite limits when IX ---> 0 if 
o # -+ 1. This property immediately followsl from expressions'(3.43 or it can be established from (2.1) 
and (2.2) when t = t /by  changing the variable of integration x = t/0 (the upper limit for 0 will then be 
0:= 1). 

We will now analyse the vector equations (3.4) which relate the known (measured) quantities x °, .0 
and the unknown 4, ~, if. Unlike what was described above (see (3.2)) we shall not solve them for 
and 11. By analogy with (3.3), by scalar product operations we obtain a system of three equations for 
determining the unknown parameters t/, iX, o 

x 02 = ty(a;U4 2 2  + 2a;a,~to+a2)=_t~/2(iX, 0)>! 0 

t2--2 - u02=tf(b~g2 2 2 +2b;bn~to+b 2)=_ f Jr G t, 0)>~0 (3.5) 

I x°l Iv °Ic = t3/[a;b;~t 2 + (a;b n + anb ;)go + anb n ] - t3/fxv (~t, o) 

The important difference between systems (3.5) and (3.4) lies in the fact that the introduction of the 
parameter Ix = pt/enables one to separate out the unknown t/and to obtain a defining system of two 
equations in the unknown iX and o. This system is non-uniquely constructed depending on the values 
of/= Ix°l, h = l~°l. 

4. D E T E R M I N A T I O N  OF T H E  S O L U T I O N  O F  
T H E  B O U N D A R Y - V A L U E  P R O B L E M  

If the magnitude of  the velocity h is sufficiently large, it is preferable to use the equation 
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12h-4 =_~2 =f2(lj.  ' o)fv-4(ix, O), c lh-3=¥v  =fxv(ix,  o)fv-3(Ix , (5) (4.1) 

to determine the unknowns Ix and o. Permissible roots (Ix/, oi), ~ ~ 0, I oil ~< 1 have to be found which 
produce a minimum value of the functional tf. From (3.5), we obtain 

t f=mint j~ ,  tyi=ty(h,  kti, oi)  , t f=hl fv( Ix ,  o)1 -I 
(4.2) 

Here, tp 2, ~2 are known (measured) quantities which are determined on the basis of 1, h, and c from 
(4.1). It follows from 114.2) that the root (Ix/, 03 which produces a maximum of the function If~(la/, o31 
will be the optimal root. 

If, however, the distance I is sufficiently large, it is necessary to use the a'elations 

h41-2 = t, p2x = fv4(ix, O)fx-2(Ix, O), ch / -~  = Vx = fxu (J.t, o)lfx(~, 0)1-3/2 
(4.3) 

tIi='!Y21fx(l'ti, °i  )l-~'-~min, Ixi=lai(~x , qlx), °=° i ( tPx ,  Yx) 
i 

which are the inverse of (4.1), to determine Ix and o. 
We find from (4.3) that the root (IXi, 03, which produces a maximum value of If~ I will be the optimal 

root. Note that tp 2 and tp 2 are functionally related: 9 2 = 9~-2. From an applied point of view, relations 
(4.1)-(4.3) are inconvenient since the quantities tp~,~, ~/~,~ can be quite large ("unbounded") when 
I/h 2 --, 0o or h2/l --~ ~0 which involves considerable computing costs. The computational difficulties can 
be reduced by introducing the normalized quantities ~x,v 

~2 x = 12 
12+h 4 - fx2(p-, o)F-2(11, o)-LE(t.t, (5) 

h 4 
qbu2 = 1 2 + h  4 =fo4(I.t, O)F-E(I.t, o)-H2Q.t ,  0) 

u/= clh( 12 + h4 )-3/4 = fxv (k t, t~) F-3/2 (~t, 0) (4.4) 

2 F2(Ia, o)-fa20.t ,  o)+fv4(la, 0), O ~ O x w  ~ 1  

t f=(12 +h4)~lF(t l ,  O)1 -)6 , t* f=m!nt f (~i  , 0i)  

Here 2 • ~, ~, W are measurable (specified) and calculable quantities. Note that • 2 and • 2 are 
functionally related: ~:.", + • 2 = 1 (as previously ~02, ~02). The unknown (Ix, o) are determined by a pair 
of  independent equations for 0 2, W or • 2, W. Since the expression for ~F is unbounded when 1, h ~ 0, 
it is preferable to use the equation 

C=fxv(kt,  o)lfx(la, o)l-llfv(la, o)1-I=c(~,  o), Icl~<l (4.5) 

By the Bunyakovski--Cauchy integral inequality, the right-hand side C in (4.5) has a modulus which 
does not exceed unity for all permissible values of Ix ~ 0, 1 o I ~< 1. 

Hence, it is next necessary to solve a particular pair of equations: • 2 E L 2, c = C or • 2 -= H 2, 
c = C for (Ix, 0) and to choose the optimal root (~, oi). It follows from (4.4) that this root corresponds 
to a maximum of the function I F(Ix, a)  I 

(~*, O*)--(I.Li, 0i)* =argrnaxlF(Ixi, oi)1 (4.6) 

Having determined the optimal values of (Ix*, a*) and t~ it is possible to construct the controls and 
trajectories. 

5. C O N S T R U C T I O N  OF THE O P T I M A L  C O N T R O L  

Suppose the optimal values of Ix*, a*, tThave been determined. Then, by (2.1), the optimal control 
can be constructed in the form of a program and a synthesis. According to the substitution ~ = t/~ made 
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in Section 3 (see (3.4)), the expression for the programmed control is transformed in the following 
manner 

u*p=Q*(t)llQ*(t)l; Q*(t)=-4*(tlt*f)+l]*, 141*=kt* 

(5.1) 
IQ*(t)l=(it*2(t/tf)2-2o*it*(t/t*f)+l) ½, Irl*l=l 

The optimal values of the n-vectors 4*, rl* in (5.1) are determined by Eqs (3.4), the solution of which 
is constructed in a similar way to the solution of (3.2). This solution can be found in an elementary 
manner since the matrix of the system consists of four (n x n)-blocks, each of which is proportional to 
the unit matrix. As a result, we obtain the expressions 

4" = CtxXO +otu t) O, 

rl* = x° + o, 

= o~;b n - anb; , 

O~ x = b~ / (t~25 *), 

Ix = -b~ / (t~-2(5 * ), 

a;. n =a~.n(l.t, t~*), 

ix o = -arl / (t~8*) 

=-a~ I (l*fS*) 

b(,q = be, n(~t*, (~*) 

(5.2) 

The functions a ; , ,  b; n are defined by (3.4), where !1", t~* are solely dependent  on two parameters, 
c and L 2 (or H2),"~or ~xample. 

In expressions (5.2) it is possible to get rid of the quantity tTand to represent them in the form 

/~  )F Oxn x - ( a  n I~ )(F • v )~noo 4 *  • • o , • • 

q* = -(  b~ 15" )F* O xnxO + (a~ 15*)( F* O0 )~no0 (5.3) 

2 xO/l  o, inOl=l, noo=vOlh ' ino01=l n x 

Substituting the expressions for 4", rl* of the form (5.2) or (5.3) into (5.1), we obtain the required 
optimal control in the form of a program which depends on t ,x °, 1)o and the three parameters of motion 
l, h, c 

Up=Up(l ,  X O, t) O l, h, c), /=Ix°l, h=lt)°l, c=cos (x  0, t) 0) (5.4) 

The optimal time t 7 = t~l, h, c) is determined using (4.2)-(4.4), (4.6) and the optimal trajectories 

are defined by expressions (2.3) in which ~ = ~* = 4*/t~ p = p* = ~t*/t~ a = 0*. As a result, the problem 
of programmed optimal control in the case of fixed x °, 1)0 is completely solved. 

We will now consider the problem of constructing a time-optimal synthesis. We assume that the roots 
Ix*, o* and the value of t*f have been determined as functions of the variables I = I x I, h = 1 1) l, c = 
cos (x, 1)) from a sufficiently wide range of values of (l, h) ~ D C R 2 and -1 ~< I c I ~< 1. Then, using 
(5.1), we obtain the feedback control u* and the Bellman function T of the problem 

Us=Us(l, h, c, x, v)=rl*( / ,  h, c, x, o )  

q* = - (b(  / (T2~5 * ))x + (a~ / (T~*))v --- kxx + kvv = 

= -(b~ la')F*Oxn x +(a~ / 6") (F 'O o )~no - Kxn x +Kun  O 
(5 .5 )  

}t*=it*(Ixl, It) l, (x, t))lxl-llt)l-l), t~*=t~*(Ixl, It)l, (x, t))lxl-llo1-1) 

n x=xlx l  -l ,  n o =t) lt)l -I 

T(x, t))=t~(Ixl,  It)l, (x, t))lxl-IIt)l-1)=(12+h4)¼1F*(it, t~)l - ~  

Here kx,,~ are the feedback coefficients with respect to x and 1) and the expressions Kx = kxl x I, 
K~ =/%1 1) I have the meaning of feedback coefficients with respect to the unit vectors nx, n~ respectively. 
Note that Kx ~ depend on two arguments: c and • 2, which are found by measurements and calculations 
using the elementary formulae: c = (x, 1))lr1-1 t1)1-1, • 2 = x2(x 2 + 1)4) -1. 
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Expressions {5.5) are obtained from (5.4) b~ m_al~..0g the substitutions 1 = Ix  I, h = I v I, c = 
(x, v)l x 1-11 ~ 1-1, that is, by making the change x ~ x, ~ ~ ~ and t ~ t - to, to ~ t, that is, t ~ 0. The 
Bellman function T in (5.5) has the meaning of the optimal time from the current phase point x(t) = 
x, ~(t) = v, In the approach described, the main computational and analytical difficulties are encountered 
in constructing and artalysing the functions Ix*, o*, T. 

To find the unknowns o and Ix, it is necessary to solve a system of transcendental equations presented 
in the following dosed  form 

fx 2 /F2=dp2, fxv /(Ifxllfvl)=c 
F 2 = . f x 2 + f v  4, f2=a~Ix2 +2a~;anIxo+a~, fo2=b~l.t2 +2bgbql.to+b 2 

fxo = agb;ix 2 + (a;bn + anbg )go + anb n 

(5.6) 
a; = _.IX-3 ((g + 30)a + IX + (302 - 1)b) 

a n = b ; = ( a + o b ) l i x  2, b n = - b l i x ,  a = ( i x 2 - 2 g o + l ) ~ - I  

b = In ((IX - 0 + (g2 _ 2go  + 1) ~ )  / (1 - 0)) 

Suppose that co = (IX - 0 + (g2  _ 2 g o  + 1)1/2)/(1 - 0 ) ,  w h e r e  0.) is  a new unknown parameter, where 
co ~> 1 and, moreover, the additional condition 0.) ~ 1 / (1  - g )  must be satisfied when 0 ~< g < 1. Then 

O - - - -  (0.) 2 - -  2ixto - 1)(0.) - 1) -2 (5.7) 

We substitute (5.7) into the first of the equations of system (5.6) and obtain an equation of  the fourth 
degree in g which enables one to express g in terms of to and thereby reduce the problem to the solution 
of  a single transcendental equation in to. The corresponding expressions are extremely long and cannot 
be presented here. 

By using computer algebra and numerical methods, a complete solution of the synthesis problem 
has been constructed: optimal control using the feedback principle and an expression for the Bellman 
function. 

Families of graphs (curves 1--4) for the feedback coefficients Kx(c, 02),  Ku(c, 02)  with respect to the 
unit vectors of the position x and velocity a) respectively are shown in Figs I and 2. The variable c, I c I 

I is taken as the argament and (i)2 as the parameter of the family, which takes the values @2 = 0.1, 
0.2, 0.4 and 0.9, respectively. The small inset graphs in Figs 1 and 2 show the behaviour of  the functions 
close to the value c = --1 and practically correspond to motion in a state of retardation along a straight 
line to the origin of coordinates. 

2 2 A family of curves F1/2(c, ~ x) for the above-mentioned values of c and @ x is shown in Fig. 3. 
The Bellman function T = (12 + h4)V4 F-1/2 is constructed from it. The computational algorithm which 
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has been constructed enables one to obtain graphs for arbitrary, fairly frequent values of  the paramete r  
of the family ~2 (see the examples in the following section). 

6. E X A M P L E S  

"lkajectories are shown with the numbers 1-4 in Fig. 4 and, with the same numbers, Fig. 5 shows the corresponding 
relations between the components of the velocity which are obtained by using the approach developed above to 
solve the problem of a "soft landing" for the system 

J~=u, x ~ R  2, lull<l, x(0)=(1,1)  (6.1) 

for different initial values of the velocity. 
The integration was performed using the standard Runge-Kutta method of the fourth order of accuracy with a 

variable step size and a control term in the Ingland form [9]. The average time for a calculation was about 30 rain 
using an IBM PC AT 486 DX 40 computer and was highly dependent on the final accuracy which was required. 
Here, neither the initial C+ + program nor the resulting machine code was subjected to optimization and the 
memory capacity required did not exceed 128 kB. The time required for a calculation can be significantly reduced 
by using standard optimization possibilities in conjunction with additional memory to store the intermediate results. 

It should be noted that the equations describing the motion become highly degenerate in the case when the 
optimal control is directed precisely into the origin of coordinates. On account of this, the calculation was carried 
out up to the instant when the magnitude of c differed from -1 by not more than 10-L In all the cases considered, 
the subsequent motion reduces to a retardation where ~2 ~ 0.2, c ---> -1. The values indicated are only attained 

J 

Fig. 5. 
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at the terminal point. There is probably no point in any subsequent increase in the accuracy in the majority of  
practical problems since, in practice, it is necessary to take account of the effect of various perturbations. In addition, 
there are a large number of  methods which are specially designed to eliminate small errors. In the context of this 
theory, an increase in a(~tracy can be achieved by reducing the maximum step size in the integration, by using a 
more advanced technique to integrate ordinary differential equations and, also, by using different asymptotic forms. 

We will now note a few facts. 
1. A second solution which satisfies the Pontryagin maximum principle never arose during the course of the 

numerical experiments although uniqueness was not proved analytically. 
2. A trajectory in which the initial velocity is directed exactly away from the origin of  coordinates is obviously a 

"scattering" trajectory: in the case of close directions, trajectories which move away from it will be optimal. 
Mathematically, it is hOlt possible to substantiate this observation at a given instant. 

3. As the initial veloclity increases, a rapid increase in to is observed at the start of  the motion. For instance, in 
the case of curve 4, the v~due of to reaches magnitudes of the order of 106. This suggests the possibility of constructing 
the corresponding asymptotic form. 

These observations show possible areas for subsequent analytic investigations. 
Moreover, the results obtained enable one to obtain a numerical solution of the problem of a "soft landing" 

using comparatively small computational resources. 

T h i s r e s e a r c h w a s s u p p o ~ e d  f i n a n c i a l ~ b y t h e R u s s i a n F o u n d a t i o n f o r B a s ~ R e s e a r c h  (96-01-00221, 
96-01-00018). 
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